27 research outputs found

    Flood Forecasting Using Machine Learning Methods

    Get PDF
    This book is a printed edition of the Special Issue Flood Forecasting Using Machine Learning Methods that was published in Wate

    REFAME: Rain Estimation Using Forward Adjusted-Advection of Microwave Estimates

    Get PDF
    Sensors flying on satellites provide the only practical means of estimating the precipitation that falls over the entire globe, particularly across the vast unpopulated expanses of Earth s oceans. The sensors that observe the Earth using microwave frequencies provide the best data, but currently these are mounted only on satellites flying in "low Earth orbit". Such satellites constantly move across the Earth s surface, providing snapshots of any given location every 12-36 hours. The entire constellation of low-orbit satellites numbers less than a dozen, and their orbits are not coordinated, so a location will frequently go two or more hours between snapshots. "Geosynchronous Earth orbit" (GEO) satellites continuously observe the same region of the globe, allowing them to provide very frequent pictures. For example, the "satellite movies" shown on television come from GEO satellites. However, the sensors available on GEO satellites cannot match the skill of the low-orbit microwave sensors in estimating precipitation. It is perhaps obvious that scientists should try to combine these very different kinds of data, taking advantage of the strengths of each, but this simple concept has proved to be a huge challenge. The scheme in this paper is "Lagrangian", meaning we follow the storm systems, rather than being tied to a fixed grid of boxes on the Earth s surface. Whenever a microwave snapshot occurs, we gladly use the resulting precipitation estimate. Then at all the times between the microwave snapshots we force the storm system to make a smooth transition from one snapshot s values to the next. We know that a lot more changes occur between the snapshots, but this smooth transition the best we can do with the microwave data alone. The key new contribution in this paper is that we also look at the relative variations in the GEO estimates during these in-between times and force the estimated changes in the precipitation to have similar variations. Preliminary testing shows that this approach has enough promise that it should be developed and studied

    Heading for 20 Years of Quasi-Global Precipitation with the New Version 06 IMERG

    Get PDF
    The U.S. Global Precipitation Measurement mission (GPM) science team is developing a long-term dataset based on intercalibrated estimates from the international constellation of precipitation-relevant satellites and other data. The Integrated Multi-satellitE Retrievals for GPM (IMERG) merged precipitation product (IMERG) is computed at the half hour, 0.1 x 0.1 resolution globally in three "Runs"Early, Late, and Final (4 hours, 14 hours, and 3.5 months after observation time, respectively). GPM is well into computing the new Version 06, which will be the first time IMERG covers the last two decades and routinely provides morphed estimates in polar regions where the surface is snow- and ice-free.A few salient features of the IMERG algorithm will be summarized, then representative examples of IMERG products will be shown. This starts with basic results, such as animations of maps, then extends to preliminary analyses of dataset characteristics. For example, the diurnal cycle demonstrates improvements over V05

    Status and Examples for the Version 06 IMERG Multi-Satellite Products

    Get PDF
    After five years of development following the launch of the Global Precipitation Measurement (GPM) missionCore Observatory, the GPM data products are now being extended across the joint Tropical Rainfall MeasuringMission (TRMM) and GPM eras. Version 06 of the U.S. GPM team's Integrated Multi-satellitE Retrievals forGPM (IMERG) merged precipitation product provides a consistent intercalibration for all precipitation productscomputed from individual satellites with the TRMM and GPM Core Observatory sensors as the TRMM- andGPM-era calibrators, respectively, and incorporates monthly surface gauge data. One major change in the basicIMERG algorithm for V06 is that precipitation motion vectors (used to drive the quasi-Lagrangian interpolation,or "morphing") are computed by tracking vertically integrated vapor (TQV) fields analyzed in MERRA2 andGEOS5. This innovation provides globally complete coverage, expanding IMERG's coverage beyond the 60N-Slatitude band previously provided by IR-based vectors, although precipitation over snowy/icy surfaces is stillmasked out as unreliable. A second innovation is that the Quality Index (QI) data field computed for the half-hourlydatasets has been refined to include estimates of correlation at microwave overpass times.We will summarize the processing status for V06 IMERG, for which the retrospective processing shouldbe actively advancing at meeting time. We will show early examples of performance. For example, the TQVmotion vectors are typically slightly better than the IR-based vectors at all latitudes. The transition across theTRMM/GPM data boundary will be discussed, including the necessity of filling in the TRMM-based calibrationsover the latitude band 35-65 in each hemisphere. The notional schedule for the eventual retirement of thepredecessor TRMM Multi-satellite Precipitation Analysis (TMPA) multi-satellite dataset will be updated as well

    A Quick Summary of IMERG Versions and Features

    Get PDF
    This talk will summarize the shifts in IMERG (Integrated Multi-satellitE Retrievals for GPM (Global Precipitation Measurement)) from Version 03 to 04 in early Spring 2016, and to Version 05 in late Summer 2017. For example, Version 04 replaced approximate pre-launch calibrations with GPM Core Observatory-based calibrations, while Version 05 introduced improved estimates for the primary GPM instrument products (DPR, GMI, and Combined Instrument). In Version 04 the IR estimates were routinely calibrated to the passive microwave estimates. As analysis showed that the Combined Instrument estimates (the IMERG calibration standard) tend to be biased high over land and low over ocean at higher latitudes, in Version 04 we climatologically calibrated IMERG to the Global Precipitation Climatology Project (GPCP) monthly Satellite-Gauge product, except in low- and mid-latitude ocean regions. This calibration leaves the relative time series intact, and only adjusts the mean of the entire series. In Version 05 the primary GPM instrument products have reduced biases, but calibration to GPCP continues to be necessary to achieve the most realistic estimates. Finally, retrospective processing back into the TRMM (Tropical Rainfall Measuring Mission) era is expected in early 2018, after which the legacy TMPA (TRMM Multi-satellite Precipitation Analysis) dataset will be retired

    Improving Monsoon Precipitation Prediction Using Combined Convolutional and Long Short Term Memory Neural Network

    Get PDF
    Precipitation downscaling is widely employed for enhancing the resolution and accuracy of precipitation products from general circulation models (GCMs). In this study, we propose a novel statistical downscaling method to foster GCMs’ precipitation prediction resolution and accuracy for the monsoon region. We develop a deep neural network composed of a convolution and Long Short Term Memory (LSTM) recurrent module to estimate precipitation based on well-resolved atmospheric dynamical fields. The proposed model is compared against the GCM precipitation product and classical downscaling methods in the Xiangjiang River Basin in South China. Results show considerable improvement compared to the European Centre for Medium-Range Weather Forecasts (ECMWF)-Interim reanalysis precipitation. Also, the model outperforms benchmark downscaling approaches, including (1) quantile mapping, (2) the support vector machine, and (3) the convolutional neural network. To test the robustness of the model and its applicability in practical forecasting, we apply the trained network for precipitation prediction forced by retrospective forecasts from the ECMWF model. Compared to the ECMWF precipitation forecast, our model makes better use of the resolved dynamical field for more accurate precipitation prediction at lead times from 1 day up to 2 weeks. This superiority decreases with the forecast lead time, as the GCM’s skill in predicting atmospheric dynamics is diminished by the chaotic effect. Finally, we build a distributed hydrological model and force it with different sources of precipitation inputs. Hydrological simulation forced with the neural network precipitation estimation shows significant advantage over simulation forced with the original ERA-Interim precipitation (with NSE value increases from 0.06 to 0.64), and the performance is only slightly worse than the observed precipitation forced simulation (NSE = 0.82). This further proves the value of the proposed downscaling method, and suggests its potential for hydrological forecasts

    Impact Analysis of Climate Change on Snow over a Complex Mountainous Region Using Weather Research and Forecast Model (WRF) Simulation and Moderate Resolution Imaging Spectroradiometer Data (MODIS)-Terra Fractional Snow Cover Products

    No full text
    Climate change has a complex effect on snow at the regional scale. The change in snow patterns under climate change remains unknown for certain regions. Here, we used high spatiotemporal resolution snow-related variables simulated by a weather research and forecast model (WRF) including snowfall, snow water equivalent and snow depth along with fractional snow cover (FSC) data extracted from Moderate Resolution Imaging Spectroradiometer Data (MODIS)-Terra to evaluate the effects of climate change on snow over the Heihe River Basin (HRB), a typical inland river basin in arid northwestern China from 2000 to 2013. We utilized Empirical Orthogonal Function (EOF) analysis and Mann-Kendall/Theil-Sen trend analysis to evaluate the results. The results are as follows: (1) FSC, snow water equivalent, and snow depth across the entire HRB region decreased, especially at elevations over 4500 m; however, snowfall increased at mid-altitude ranges in the upstream area of the HRB. (2) Total snowfall also increased in the upstream area of the HRB; however, the number of snowfall days decreased. Therefore, the number of extreme snow events in the upstream area of the HRB may have increased. (3) Snowfall over the downstream area of the HRB decreased. Thus, ground stations, WRF simulations and remote sensing products can be used to effectively explore the effect of climate change on snow at the watershed scale
    corecore